Understanding and Visualizing
Data Iteration in Machine Learning

Fred Hohmanv*, Kanit Wongsuphasawat>, Mary Beth Kery*, Kayur Patel*

¥ Georgia Tech
Atlanta, GA, USA
fredhohman @ gatech.edu

ABSTRACT

Successful machine learning (ML) applications require itera-
tions on both modeling and the underlying data. While prior
visualization tools for ML primarily focus on modeling, our
interviews with 23 ML practitioners reveal that they improve
model performance frequently by iterating on their data (e.g.,
collecting new data, adding labels) rather than their models.
We also identify common types of data iterations and asso-
ciated analysis tasks and challenges. To help attribute data
iterations to model performance, we design a collection of
interactive visualizations and integrate them into a prototype,
CHAMELEON, that lets users compare data features, train-
ing/testing splits, and performance across data versions. We
present two case studies where developers apply CHAMELEON
to their own evolving datasets on production ML projects. Our
interface helps them verify data collection efforts, find failure
cases stretching across data versions, capture data processing
changes that impacted performance, and identify opportunities
for future data iterations.

Author Keywords
Data iteration, evolving datasets, machine learning iteration,
visual analytics, interactive interfaces

CCS Concepts
*Human-centered computing — Visual analytics;
*Computing methodologies — Machine learning;

INTRODUCTION

Successful machine learning (ML) applications require an iter-
ative process to create models that deliver desired performance
and user experience [4, 38]. As shown in Figure 1, this pro-
cess typically involves both model iteration (e.g., searching
for better hyperparameters or architectures) and data iteration
(e.g., collecting new training data to improve performance).
Yet, prior research primarily focuses on model iteration.

Machine learning (ML) researchers are rapidly proposing
new model architectures for tasks in computer vision and

* Work done at Apple Inc.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI’20, April 25-30, 2020, Honolulu, HI, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6708-0/20/04.

DOI: https://doi.org/10.1145/3313831.3376177

* Apple Inc.
Seattle, WA, USA
{kanitw, kayur } @apple.com

x Carnegie Mellon University
Pittsburgh, PA, USA
mkery @cs.cmu.edu

Dataiteration Model iteration

C_ <
\) —
S <
World Data Model

Figure 1. An overview of a typical machine learning process, which
involves both model iteration (e.g., changing model architectures or hy-
perparameters) and data iteration (e.g., collecting new data to improve
new model performance). This paper focuses on data iteration as its
tooling is underexplored compared to model iteration.

natural-language processing, in some cases producing weekly
state-of-art results. This focus on modeling has lead to new
emerging research areas. ML systems research supports more
efficient and distributed training of multiples models simulta-
neously [2, 8, 10], and automated machine learning (AutoML)
systems spawn hundreds of models at once and apply end-to-
end model selection and training so that users need only input
their data [12, 31]. Within the human-computer interaction
and visualization communities, interactive machine learning
and human-in-the-loop research often contributes new systems
and interaction techniques to help model developers compare,
evaluate, and understand models [4, 11, 40, 46].

This primary focus on model iteration makes sense in aca-
demic and research settings, where the objective is to build
novel model architectures independent of which dataset is
used. Yet in practice, the underlying dataset also determines
what a model learns—regardless of which model or architec-
ture is chosen. The classic ML colloquialism, “garbage in,
garbage out,” evokes this essential fact that data needs to have
the appropriate signal for a model be useful. In real world
applications, rarely do teams start out with a dataset that is a
high-quality match to their specific ML project goals. Thus
data iteration is vital to the success of production ML projects.

To create high performance models, developers need to iterate
on their data alongside their model architectures. Over the
course of a machine learning project, datasets may change
jointly alongside models for a variety of reasons. As a project
matures, developers may discover use cases underrepresented
in their datasets and thus need to collect additional data for
such cases. Changes in the world may also affect the distri-
bution of new data. For example, the latest viral video may
drive spikes in internet search traffic and change search query
distributions. These data changes raise interesting challenges
and questions during model development: How does one track,

https://doi.org/10.1145/3313831.3376177

visualize, and explore a dataset changing over time? Is a cer-
tain model stable with respect to data change (e.g., does the
performance improve or regress)? Does adding more data to
an underperforming area of a model fix the problem?

In this paper, we focus on data iteration as a fundamental pro-
cess in machine learning. To better understand data iteration
practice and explore how interactive visualization can support
data iteration, we make the following contributions:

o Formative research on data iteration practice. Through
a set of interviews with 23 machine learning practitioners
across 13 teams at Apple, we identify common types of data
iterations as well as the tasks and challenges practitioners
face with evolving data.

o Interactive visualizations for evolving machine learning
datasets. We design and develop a collection of interactive
visualizations for evolving data that let users compare data
features, training/testing splits, and performance across data
versions. We integrate them into a prototype, CHAMELEON,
to illustrate how the visualizations work together to help
model developers explore data changes and attribute them
to model performance.

e Case studies on analysis of evolving datasets. We
present two case studies in which model developers apply
CHAMELEON and its visualizations to examine their own
evolving datasets used in machine learning projects. We find
that our interface helps the model developers verify their
prior data collection efforts, find failure cases that stretch
across data versions, capture data processing changes that
impacted model performance, and prompts them to perform
future data iterations.

We hope this paper helps emphasize the importance of design-
ing data as equally important as designing models in the ML
process, inspiring future work around evolving data.

BACKGROUND & RELATED WORK

Our work draws upon and extends prior research within ma-
chine learning development and iteration literature, visual
analytics for machine learning, and visual data exploration.
Note that data iteration is subtlety different from data process-
ing. Data processing describes mechanical transformations
of static data (e.g., converting raw user logs to data tables)
whereas data iteration is more concerned with the evolving
process of how data changes during model development.

Evolving Machine Learning

Applying machine learning, particularly in production settings,
often involves long and complex iterations [4, 29]. During
these iterations, model developers must be careful that only
one component of the modeling process changes to ensure
fair comparison between trained models [27]. Enforcing this
can be challenging, particularly when a particular model is
integrated into a larger Al-system. This is the CACE principle,
“Changing Anything Changes Everything,” in action: any one
change during the modeling development process, from initial
collection to monitoring after deployment, can have wide-
reaching effects on final model performance [38].

These unique challenges also impact software development
for machine learning [29]. A recent study of ML industry pro-
fessionals found that “discovering, managing, and versioning
the data needed for machine learning applications is much
more complex and difficult than other types of software engi-
neering” [3]. Data collection alone can be a bottleneck for
production ML,; for a survey see [35]. One system, Prospect,
uses multiple ML models to help people diagnosis errors by
understanding relationship between data, features, and algo-
rithms [28]. Other work from the database community agrees
that ML pipelines struggle with data understanding, validation,
cleaning, and enrichment [30]. Data changes can exacerbate
these challenges. Data drift occurs when data changes over
time, causing predictions to become less accurate as features
and labels slowly change in unforeseen ways. Many methods
are developed to detect data drift [6, 7], while other work aims
to compute a “data diff” to provide a concise, interpretable
summary of the differences between two datasets [42].

In this paper, through a set of interviews with ML developers at
Apple, we investigate ML iteration, focusing on data iteration,
and identify common types of data iterations, as well as the
tasks and challenges practitioners face with evolving data.

Visual Analytics for Machine Learning

Previous work demonstrates that interaction between people
and machine learning systems enables collaboratively shar-
ing intelligence [41]. Visual analytics has since succeeded in
supporting machine learning model developers with a variety
of modeling tasks [15, 23, 24, 36], such as model compar-
ison [48] and diagnosis [19]. Yet many interactive systems
focus on improving model performance. For example, Model-
tracker is a visualization that eases the transition from model
debugging to error analysis, a common disruptive cognitive
switch during the model building process [5]. Squares extends
these ideas and supports estimating common performance
metrics in multi-class classifieres while displaying instance
level distribution information necessary for performance anal-
ysis [34]. With respect to instance-level analysis, MLCube
Explorer and Activis both enable interactive selection of in-
stance subsets for model inspection and comparison [16, 17].

Visualization has also supported other data-centered tasks in
ML, such as ensuring data and annotation quality [21, 22].
Closer to our work are Featurelnsight and INFUSE, two sys-
tems that focus on improving feature ideation and selection
using visual summaries [9, 20]. Featurelnsight explores how
visually summarizing sets of errors supports feature ideation
by contributing a tool that helps ML practitioners interactively
define dictionary features for text classification problems [9].
INFUSE helps analysts understand how predictive features
are being ranked across feature selection algorithms, cross-
validation folds, and classifiers, which helps people find which
features of a dataset are most predictive in their models [20].
Both systems consider data iterations where given a particular
dataset, explore how practitioners transform the dataset so that
a model can capture the appropriate predictive signal. Both
systems also help model developers transform their datasets,
so that a model can capture the appropriate predictive signal.
We contribute to visual analytics literature by designing and

developing interactive visualizations that specifically support
retrospective analysis of data versions and instance prediction
sensitivity over time throughout ML development.

Visualization for Data Exploration

During exploratory data analysis [43, 14], users may be un-
familiar with their resources (e.g., data), uncertain of their
goals, and unsure how to reach them. These processes involve
browsing to gain an overview of the data or searching the data
to answer specifics questions, all while refining their goals and
potentially considering alternative approaches.

There are a number of prior visualization techniques for data
exploration. Faceted browsing [47] lets users use metadata
to filter subsets of data that share desired properties. The
rank-by-feature framework [39] allows users to examine low
dimensional projections of high-dimensional data based on
their statistics. Facets [1] focuses on visualizing machine learn-
ing datasets, including the training and testing split, through
two visualizations that help developers see the shape of each
feature and explore individual observations. Profiler [18] uses
data mining methods to automatically flag problematic data to
help people assess data quality. Voyager [44, 45] blends man-
ual and automated chart specification to help people engage in
both open-ended exploration and targeted question answering.

However, these systems do not support temporal aspects of
data (how data can change over time) and often only show
univariate summaries. In this paper, we extend data explo-
ration visualization techniques to machine learning datasets
that change over model development time, including a new vi-
sualization for showing feature distributions that incorporates
model performance and supports data version comparison.

UNDERSTANDING DATA ITERATION

We conducted a set of semi-structured interviews with 23
machine learning practitioners to understand their iterative
development process. The participants, as listed in Table 1, in-
clude applied ML researchers, engineers, and managers across
13 teams at Apple. These conversations centered on machine
learning iteration and lasted an hour on average. In this paper,
we focus on data iteration, a common yet understudied aspect
of ML development. From the interview data, we used a the-
matic analysis method to group common purposes, practices,
and challenges of data iteration into categories [13]. We then
iterated and refined these categories as we conducted more in-
terviews. Throughout the paper, we use representative quotes
from participants to illustrate the main findings from the study.
We refer to the practitioners by their labels from Table 1.

Why Do Data Iteration?

Data Bootstraps Modeling

ML projects often start with a small amount of data and a
simple model, and then scale to more data and more sophis-
ticated model architectures during development (CV7, CV8).
This approach allows developers to conduct lightweight ex-
periments, making faster progress at the start of the project to
test feasibility (S1). Upon starting a project, practitioners may
not know specific characteristics of the data needed for the
modeling tasks. Thus, they often start with publicly available

Domain Specializations Practitioners
Computer Large-scale classification, CV{1-8}
vision object detection, video

analysis, visual search
Natural Text classification, ques- NLP{1-8}
language tion answering, language
processing understanding

Applied ML Platform and infrastruc- AML{1-5}

+ systems ture, crowd-sourcing, an-
notation, deployment
Sensors Activity recognition S1

Table 1. Interviewed ML practitioners, by domains and specializations.

datasets if possible, or gather a small amount of data to begin
modeling. From there, if different types of data are required,
an annotation task is designed and deployed to gather data and
labels (CV4, CV5). In a scenario like this, newly annotated
data can be highly valuable for informing modeling decisions
and gauging the success of the project.

Data Improves Performance

A more striking reason for conducting data iteration is what
CV7 said when asked how to best improve model performance
once a state-of-the-art model architecture has already been
chosen and trained:

“Most of the time, we improve performance more by
adding additional data or cleaning data rather than chang-
ing the model [code].” —CV7, Applied ML developer

In this scenario, augmenting the existing dataset with new
data instances is the preferred action to improve model per-
formance and robustness compared to experimenting further
on the model code and architecture. S1, a machine learning
engineer working on a computer vision project, says that every
month their team receives roughly 5% more labeled data that
can have a significant effect on model performance. This type
of data iteration, namely data collection (surveyed extensively
in [35]), is frequently used in production ML projects, but
occurs less often in traditional research settings.

The World Changes, So Does Data

Until now, we have discussed data iteration as an intentional
process to improve model performance, but sometimes data
change is imminent and out of the developers’ control. Some
practitioners said that their modeling procedure can be reac-
tionary depending on changes in the world that impact the
type, quality, and amount of collected data (NLP1, NLP5,
NLP6, NLP7). This can have far reaching implications on
model performance and user experience, particularly when
new types of data that a model has never observed before are
generated and collected.

Entangled lterations

The practitioners often distinguished iterations on the model
versus the data, but noted both are inherently intertwined over
the course of a machine learning project’s lifespan. Separat-
ing these two components to ensure fair comparisons (e.g.,

across models or data) is essential for making development
progress. We also observed the subtle notion that data it-
eration, while fundamental to production machine learning
development, can be buried in language while describing work
and communicating modeling limitations. While describing a
previous project, NLP4, a machine learning manager, caught
himself mid-sentence to clarify that, “over time means over
the course of the data changing.” NLP8 explained that current
tooling, including systems and visualizations, typically only
gain investment for more established projects, where dash-
boards are developed to compare and track important metrics.
These dashboards show models over time without explicitly
separating model iterations from data iterations.

Common Ways Practitioners Iterate on Data

To understand how data can change, we first analyze the space
of data evolution within machine learning. Consider the basic
possible operations for how either the rows or columns of
a dataset could change: % Add, = Remove, and C' Modi fy.
These operations can be applied to each of the common com-
ponents of a machine learning dataset (e.g., instances, features,
labels) to enumerate possible data iterations.

Another common distinction within machine learning datasets
compared to other types of data is the train/test/validation
split. The three operations can also apply to each of these data
subsets. This design space helps us enumerate possible data
iterations broken down by common ML dataset components.

From our interviews, we recorded common data iterations
taken in practice and which domain they most frequently occur.
Below we list these, as well as their corresponding mapping
in our evolving data design space.

Add sampled instances. Gather more data ran-
domly sampled from population. In projects where data
labels are already included in the raw data, e.g., where human
annotation is not required, data iteration typically involves au-
tomatically collecting new instances at regular intervals from
the user population and incorporating them into the modeling
pipeline (S1, NLP6, NLP7, AMLYS).

Add specific instances. Gather more data inten-
tionally for specific label or feature range. When certain
instance types are known to be underrepresented, practition-
ers will intentionally target collection efforts to better balance
the global data distribution. Practitioners mentioned this is
useful when data labeling is particularly time consuming or
requires significant effort. Ultimately this helps them get the
best “bang for the buck” (CV3, CV4).

Add synthetic instances. Gather more data by cre-
ating synthetic data or augmenting existing data. CV7
and CV8 described two scenarios to improve the robustness
of their models: synthetically creating new data (for 3D com-
puter vision tasks), such as rendering 3D scenes in different
lighting and camera positions, and augmenting datasets (such
as rotating and translating images for computer vision tasks).

Add labels. Add and enrich instance annotations. En-
riching existing data, for example, by adding more annota-

tions to existing images, is a preferred approach when new
raw data collection is unavailable or costly (AML4).

= Remove instances. Remove noisy and erroneous out-
liers. Removing and filtering undesired instances typically
happens within processing or modeling code, taking the form
of a “data blacklist” or “filter bank” (S1, NLP6, CV6).

C' Modify features, labels. Clean, edit, or fix data.
Data cleaning, a ubiquitous data iteration, is also incorpo-
rated into ML processing pipelines, and can be the focus of
experiments to test its impact on performance (CV6).

We see that the most common operation used in practice is the
addition of more data, features, and labels. Conversely, few
data is ever removed. Modifying data encompasses a range of
subtlety different processes, from cleaning messy data to edit-
ing existing labels to ensure high-quality annotations. These
findings (1) corroborate existing work [35] that breaks down
data collection into acquisition, labeling, and updating tasks,
and (2) summarize how practitioners conduct data iteration.

Data Iteration Frequency

Regarding how often practitioners update their models or
datasets, answers varied widely by project and domain. Some
practitioners explained that their model changes monthly
(NLP1, AML2), weekly (CV4), or as frequent as daily
(AML?2), where datasets change ranging from monthly (NLP5,
S1, NLP6, AMLYS), weekly (NLP6, CV4, CV5), daily (NLP3),
and even per minute (NLP1). While the rate at which a model
updates correlates with how fast the data changes, the time that
new data takes from being collected to being included in a new
model may be on a different time scale. NLP4 expressed that
the rate of which data iteration occurs depends on the project.
He cited logistic constraints (e.g., the number of developers,
budget, and annotation effort) as the causes of the variation.

Challenges with Data Iteration

When prompted about their general machine learning prac-
tice and if their datasets change over the duration of model
development, nearly every practitioner voiced that they have
experienced challenges (C1-C5) in their work.

Tracking Experimental and Iteration History (C1)

A particularly difficult challenge is keeping track of model
performance across iterations. While helping people under-
stand their model history has been explored in literature [27],
understanding data history remains underexplored. “Can’t we
go back to see how we used to be doing?”, says NLP5, directly
calling out a lack of model and data tracking tooling support.
CV2 told us that many people simply look at the metrics, but
that these can hide spurious subtleties. For example, even
if the overall performance across versions remains constant,
certain data subgroups may regress over time. Indeed, predic-
tion churn, predictions for data instances that change given
some change in the modeling pipeline, can occur given a new
data iteration without any change to the model code (NLP5).
To overcome this challenge, another engineer said a common
method for comparing models trained on old data from weeks
ago and a new model with new data is to fix the modeling code

(e.g., architecture, hyperparameters), and retrain with the new
training data, while fixing the testing sets (S1).

Similarly, practitioners want to know how their data changes
across versions. NLP4 said they want to know how the inputs
to their model change, since they consistently collect data
to update their models. AMLS5 voiced similar concerns, and
said it is important to understand data and feature drift during
model development. AMLS also said they have implemented
automatic methods to detect data drift [6, 7], which act as
“good sanity checks” during development.

When to “Unfreeze” Data Versions (C2)

How does one make informed model decisions during persis-
tent data collection? “Fix [the data], and pray to god it doesn’t
change,” said AML2, an experienced ML manager. AML3
corroborates this, noting that teams will freeze a window of
data to tune model architectures. However, eventually this
window must be expanded to account for new data. AML3
also said this window is often fixed longer towards a project’s
inception, but as real-world data is annotated or collected,
the freeze time shrinks towards the end of development to be
consistently evaluating against fresh data.

Regarding testing sets, CV5 and NLP8 emphasized their
projects contain “golden test sets:” test sets that are usually
hidden during development so practitioners prevent overfitting.
These tests sets are usually fixed over longer periods of time
(NLP7) to ensure wide coverage of evolving datasets; however,
these too will eventually need to be updated to account for
data drift and avoid overfitting to a specific golden set.

When to Stop Collecting Data (C3)

Modern ML models are data-hungry, but crowdsourcing anno-
tations can take significant resources (e.g., time and money).
Given the value that new data brings to a model, it is difficult
to know when to stop data collection (AML4). CV4 said, “we
don’t know when to stop getting data, so we start building
[models] as soon as new data arrives.” This is corroborated in
prior data collection work [35]. AML4, who works in crowd-
sourcing and data annotation, said as new data arrives, its
value is high, but over time as a project’s definition becomes
more fixed and the data distributions solidify, collection may
no longer be the top priority, depending on the project.

Manual Failure Case Analysis (C4)

Since many ML projects start as experiments to prototype
what is possible, robust software infrastructure is not an initial
priority. In these scenarios, manual anomaly detection and
error analysis can be time consuming yet critically important.
This is heightened in projects where data can change, since
incorrectly predicted instances may change from version to
version (NLP5) [27]. NLP2 and CVS5 said that during more
fragile stages of a project, they “work retrospectively, looking
at specific fail cases to find patterns.” To find such error pat-
terns, practitioners usually break down model metrics by class
(or some other meaningful grouping) and list every mistake in
hopes to identify a common thread.

Building Data Blacklists (C5)
Practitioners explained that instances are usually removed
from a dataset when they contain undesired and erroneous

feature values or labels. These instances will either prevent
a model from generalizing, or are deemed not relevant for a
project’s appropriate success. S1, NLP6, and CV6 noted that
their projects contain a living list of instances to remove, i.e., a
“data blacklist”. This bank of filtering logic continuously grows
as data changes and is applied to raw data during processing
stages to ensure the inputs to a model are high-quality.

VISUALIZING DATA ITERATION: MOTIVATION & TASKS
From the interviews, there is a clear desire for better tooling
and interfaces for evolving data. Practitioners said that exist-
ing tools were either insufficient or nonexistent, and expressed
enthusiasm for visualization tools to help them attribute data
changes to model performance. These conversations also
yielded several key ideas that inspired us to design new inter-
active visualizations for understanding data iteration.

As discussed in the interview findings, to analyze the effect
of data changes on model performance, developers need to
isolate the data changes from model architecture changes by
fixing a model code constant while comparing data versions.
We aim to design interactive visualizations to support this
data comparison scenario. To inform our design, we distill
tasks that practitioners need to perform to understand how data
evolution affect model performance:

T1. Track and retroactively explore data iterations and model
metrics over data versions (C1, C4).

T2. Attribute model metric change to data iterations (C2, C3).

T3. Compare feature distributions by training and testing
splits, by performance (e.g., correct v. incorrect predic-
tions), and by data versions (C2, C3, C5).

T4. Understand model sensitivity over data versions (C4, C5).

CHAMELEON: VISUAL ANALYTICS FOR EVOLVING DATA
With the tasks identified from our formative research, we
present a collection of interactive visualizations integrated
into a prototype, CHAMELEON, that enables model developers
to interactively explore data iteration during ML development
(Figure 2): (A) the Data Version Timeline, (B) the Sidebar, and
(C) the Feature View. We describe the implementation using
tabular data; however, we have designed CHAMELEON such
that extending to other data types only requires adding domain-
specific views, e.g., an instance viewer to show images, text,
or sensor streams. Throughout the following section, we link
relevant views and features to the supported tasks (T1-T4).

Data Version Timeline: Data lterations Over Time

To help practitioners track and inspect data versions, the top
of the interface includes a Data Version Timeline (Figure 2A).
To examine a particular version, users can click a blue arrow-
head indicator () above a particular version in the timeline.
To compare the data version with another
version, users can select a by clicking the
pink arrowhead indicator (#) below a particular version. To
see details about a data version, hovering over any version
displays a tootip including the version’s date, the number of
instances, and the model’s train/test accuracy (T1).

Chameleon

Dataset Info

Dataset
evolving-data-name

@ Sidebar

Versions

19

Feature

feature_1

Version Date Instances Train Acc. TestAcc 0.00 0.00 0.00 0.00

100.00 100.00 | 100.00 100.00

113 1/11/2019 53,174 41
0 7 08 7565 75.49| 7568 75.80

1/8/2019 49,282

0.841

f 2
Aggregated Embedding eature..

feature_3

0.00 0.00 0.00

11.99 11.99 11.98

2,07

g8

5,000

20,000

10,000

15,0004

10,000

5,000

115 — 116

Train Distribution

118
1/26/2019

) Code

Q Data Version Timeline

Test Distribution

0 10 20 30 40 5 60 70 8 90 100

O Feature View

0 4 5 6 70 8 9 100

0 2000 4000 6000 8000 10000 12,000 14,000 0 2000 4000 6000 8000 10,000 12,000 14,000

0.00-0.40
ct: 3,861
ct: 892
ct: 3,629
ct: 836

Figure 2. The CHAMELEON interface integrates multiple coordinated views to help practitioners explore their evolving datasets. The Data Version

Timeline (A) lists data versions across the top of the interface and allows users to select a

and a version to visualize below. The

Sidebar (B) shows version summaries and multiples views that visualize changing instance predictions. Practitioners can use the sibebar views to filter
data in the Feature View (C), which visualizes each feature of a dataset as a histogram with both selected data versions, faceted by performance and the

train/testing split. Dataset and feature names are redacted for anonymity.

Feature View: Visualizing Evolving Distributions

The primary view of CHAMELEON is the Feature View (Fig-
ure 2C), which helps developers understand the distributions
of all features in an evolving dataset. The view shows each
feature as a row that contains summary statistics and over-
laid diverging histograms for the training and testing splits.
Given a pair of selected data versions, users can inspect how
their datasets change with respect to the feature distributions,
faceted by the training and testing split, as well as by the
performance of other data versions.

Consider one feature’s distribution for the training set (the test
set distribution visualization is analogous) in Figure 3. Each
distribution is represented as a histogram, where the x-axis
encodes the feature’s units and the y-axis is a count of the
number of instances within a specific bin. However, we extend

Correct

1

Count

!

Incorrect

Figure 3. The Feature View visualizes each feature with an overlaid di-
verging histogram. The binned feature units are placed on the x-axis and
the count on the y-axis. Data instances within a bin that are correctly
predicted are included above the x-axis, and instances that are incor-
rectly predicted are included below the x-axis. We overlay the

and the dataset versions for version comparison.

Binned feature

this chart by also including performance information: data
instances that are correctly predicted are placed above the axis,
where instances that are incorrectly predicted are placed be-
low. This allows users to quickly see regions of the feature are
underperforming (T3). However, given a new dataset based
on some data iteration, is the new dataset’s distribution the
same as the old one? Extending this visualization design fur-
ther, besides showing only the in the
Feature View, we overlay the on top, which
allows users to now inspect a single feature’s distribution and
compare the distribution shape and performance across two
data versions (T3). Hovering over any element of one of the
overlaid diverging histograms displays a tooltip with details
including the bin range, how many instances are included in
the bin, and how many instances are correctly and incorrectly
predicted for both the and

The overlaid diverging histogram is a result from an iterative
design process in which we aim to include the training/testing
split, model performance, and data versions in a single view.
As seen in prior work [5, 34], there are many ways to facet each
feature. We overlay the histograms of both data versions so
users can use the same axis to compare their distributions. We
split the training and testing distributions into separate views
since their scales often differ in magnitude (testing sets are
usually much smaller than training sets). Lastly, we encode
performance as a shift in y-axis so that users can compare
parts of each distribution that are more often correctly (or
incorrectly) predicted along a feature’s unit axis.

ratio

correct
|

correct
|

incorrect
|

Version 18

No prediction change Prediction change

61,286 2,919

incorrect
|

1,000

@
3
3

00

count_from_ids

sensitivity

A. The Aggregated Embedding allows users B. The Prediction Change Matrix reveals C. The Sensitivity Histogram shows predic-
to identify clusters of similar instances using how instance predictions change between a tion sensitivity (the number of prediction

dimensionality reduction.

pair of data versions.

changes over all versions) across instances.

Figure 4. The Sidebar provides multiple views to visualize evolving instance predictions.

Sidebar: Visualizing Evolving Instance Predictions

The top of the Sidebar (Figure 2B) displays metadata about
the selected data versions, including the metrics listed from
the Data Version Timeline (T1). The Sidebar also contains
three interactive visualizations that provide different views
inside evolving ML datasets and their impact on the modeling
process, including the Aggregated Embedding (Figure 4A),
the Prediction Change Matrix (Figure 4B), and the Sensitivity
Histogram (Figure 4c). Clicking any visual element within
any of the three visualizations filters the Feature View. Below
we discuss the usage and encodings of each visualization.

Aggregated Embedding

The Aggregated Embedding (Figure 4A) shows the

data version via a discretized summary plot of the data’s dimen-
sionality reduction output. This plot gives users an overview
of the dataset and is useful for discovering potential clusters
of similar instances (T2).

For reduction and visualization, the Aggregated Embedding
uses UMAP [26]: a non-linear dimensionality reduction that
better preserves global data structure compared to other tech-
niques like t-SNE [25]. UMAP often provides a better “big
picture” view of high-dimensional data while simultaneously
preserving local neighbor relations. Since datasets can contain
many instances in practice, we use a 2D histogram (instead of
a scatterplot) to visualize the embeddings. Essentially, we dis-
cretize the embedding space and aggregate instances into cells.
Each cell size is scaled by the number of instances within that
cell. To indicate the performance of the instances in each cell,
we also color cells using a diverging color-scale based on the
ratio between correctly and incorrectly predicted instances.

To identify clusters, users can look for a number of differ-
ent patterns, such as large blue cells (many instances that are
mostly correctly predicted), smaller red cells (fewer instances
that are mostly incorrectly predicted), and groups of similar
cells (T2). Hovering over any cell displays its details, includ-
ing the number of correct instances, incorrect instances, their
sum (the size encoding), and its prediction performance ratio

(the color encoding). Clicking on any cell filters the Feature
View to show its instances in feature space.

Prediction Change Matrix

When training on new data, does a model improve in the ex-
pected ways, or does it unexpectedly regress? Given a pair of
data versions (and), the Prediction Change
Matrix (Figure 4B) shows the subset of the instances that ex-
ist in both versions and facets them by both their prediction
correctness and version (T4). As a result, the four cells within
the Prediction Change Matrix include:

. version correct, version correct. Instances
unaffected by the data iteration (Figure 4B, top-left).

° version incorrect, version incorrect. In-
stances require more attention to improve the model (Fig-
ure 4B, bottom-right).

° version incorrect, version correct. In-
stances where the data iteration improved the model and
caused existing data to become correctly predicted (Fig-
ure 4B, bottom-left).

° version correct, version incorrect. In-
stances where the data iteration caused the model to regress
(Figure 4B, top-right).

Cells are colored and labeled with their corresponding instance
count. To help model developers understand where these
groups of instances are located within the dataset, clicking any
cell filters the Feature View to show where in each feature’s
distribution the instances are located (T2).

Sensitivity Histogram

The Sensitivity Histogram (Figure 4C) shows the prediction
sensitivity of data instances over versions within the selected
version range (T4). Given a range of data versions in an evolv-
ing dataset, we compute the following sensitivity measure: for
each data instance, obtain its prediction using the new model
trained on each data version; then, given this ordered list of
predictions, compute the number of adjacent changes the pre-
dictions make. For example, at an early version of the dataset,

Version

1.0 1.1 1.2 1.3 1.4 | Sensitivity
o0 6510 X X X 1
£ 2457 X 1
2 583 X X 4

Figure 5. An instance’s sensitivity denotes the number of its prediction
changes throughout data versions. Instance 6510 has a sensitivity of 1,
changing from incorrectly to correctly predicted (model improvement).
Instance 2457 also has a sensitivity of 1, but flips from correctly to incor-
rectly predicted (model regression). Lastly, instance 583 has a sensitivity
of 4, indicating that the instance is sensitive to model changes.

a particular data instance may be incorrectly predicted by a
model, but a later model trained with more data collected may
correctly make a prediction for the instance. We compute this
measure for each instance within an evolving dataset, and plot
its distribution in the Sensitivity Histogram. Figure 5 shows
this computation on three example data instances: one that
improves model performance, one that causes a regression,
and another whose prediction constantly flips.

The Sensitivity Histogram lets users see how data instance
predictions change over data versions. The x-axis shows the
sensitivity measure (number of prediction changes across data
versions) while the y-axis shows its count. Users can find data
instances whose predictions may change frequently across ver-
sions, hinting that these types of instances may be close to the
model’s decision boundary or underrepresented within the en-
tire dataset (T4). Conversely, many data instances may never
change their prediction across data versions, indicating that
these instances are not impacted by the taken data iteration.
This view could help developers identify types of instances
that need to be considered separately from the global model
or suggest further data collection of instances with different
feature values. Lastly, clicking on any bar within the Sensitiv-
ity Histogram filters the Feature View to show the distribution
of these instances across the dataset’s features (T2).

System Design and Implementation

CHAMELEON is a modern web-based interface built with Re-
act! and Redux?. All data processing® and model training* was
done in Python using the standard data science suite. Visual-
izations were constructed and rendered using Vega-Lite [37].

CASES STUDIES ON DEPLOYED ML PROJECTS

We demonstrate CHAMELEON on two case studies where
invited model developers used the system to analyze their
own evolving machine learning datasets used in products at
Apple. For each use case, we loaded the developer’s evolving
dataset into CHAMELEON. The developer then spent 11/2-hours
analyzing their data. During the sessions, they verbalized their
thought process in a think-aloud protocol.

To start, each practitioner signed a consent form and provided
background information about their project and ML iteration

]React.js: https://reactjs.org

2Redux.js: https://redux.js.org

3pandas: https://pandas.pydata.org
4gcikit-learn: https://scikit-learn.org/stable/

practice. After a system tutorial, we let them explore their
evolving dataset using CHAMELEON, while encouraging them
to verbalize their insights, actions, concerns, and any devel-
oped hypotheses. We prepared a set of general questions based
on CHAMELEON’s capabilities to guide practitioners in case
they were unsure what to view next. Examples include: Do
the feature distribution shapes change over time in expected
ways? Can you find any instances that change predictions
often? Where do they lie in feature space? Are there any
clusters of underrepresented points you did not know about?

Each session ended with an exit interview that asked practi-
tioners to reflect on their process of jointly iterating on their
data and model during project maturity, their experience using
our interactive interface, and if it could be useful for them.

We aim to simulate ML development where a model is affected
by a changing dataset. Our setup is as follows: given the
modeling code that creates a model from a given dataset, we
fix this code (e.g., architecture, hyperparameters). Now, given
an evolving dataset that has changed over time, we apply the
modeling code to each dataset version, training a new model
at every version, so that a series of models exists that can be
compared fairly with respect to data versions. We also account
for non-determinism in the model’s training process by fixing
arandom seed. This setup is the inverse of the model iteration
process, where a dataset is frozen and one iterates on the model.
Note, while the evolving datasets used in both case studies
are real, the models here were trained by the researchers and
do not reflect production metrics, e.g., accuracy. To preserve
anonymity, dataset and features names are redacted.

Case Study I: Sensor Prediction

The first project aims to classify sensor data from mobile
phones to decide whether to engage a particular feature on
device. The dataset has 64,502 instances from real users,
collected over 2 months. Each instance has 20 features, most
of which are quantitative values that represent a particular
measurement quantized at various time windows (e.g., 1, 12,
and 24 hours). The model developer, named D1 for anonymity,
was actively working on improving their ML pipeline.

Visualization Challenges Prior Data Collection Beliefs

D1 first checked the overall performance of the model by in-
specting the train and test accuracies, as well as the color of
the Aggregated Embedding, noting that color the embedding
was largely shades of blue, indicating a reasonably performing
model. D1 then surveyed the entire list of features, discussing
the overall shape of each feature. In this dataset, most fea-
tures were skewed towards the end of the features’ range. D1
explained that he was aware of this skew, but CHAMELEON
made it much clearer, and ultimately he was surprised about
magnitude of the skew (e.g., Figure 2C and Figure 6).

In fact, D1 said he was “continually distracted” by this skew
throughout his session. He was constantly hypothesizing the
behavior of the phone users’ collected data. For example, D1
said, “I am surprised [test users] behave like this, more than I
originally thought.” Using the visualizations reinforced future
analysis he wanted to run on a subset of the data within a
particular feature range.

https://reactjs.org
https://redux.js.org
https://pandas.pydata.org
https://scikit-learn.org/stable/

400 2,000 4,000

200 1,000 2,000

1.1 1.5

10,000

5,000 5,000

1.13 1.18

Figure 6. A feature’s long-tailed, multi-modal distribution shape solidifies over collection time, from 1,442 (ver. 1.1) to 64,205 (ver. 1.18) instances.

Finding Failure Cases

From there, D1 used the Aggregated Embedding to filter the
Feature View, searching for clusters of data that were either
not performing well (e.g., red in the Aggregated Embedding)
or had small number of instances (e.g., small in the Aggregated
Embedding). D1 suggested that these are likely underrepre-
sented subsets of users. Another group of instances D1 found
did not have much “history” in the data (e.g., lacking richness
in historical features), making it hard for the model to predict.

When inspecting all the previous data versions, D1 noted that
the “shape of the features solidifies quickly; in this dataset,
that’s a good thing to confirm” (Figure 6). D1 explained
that their team knows there exist outlier cases, but that they
can only gain value from them by understanding their place
in the context of the global distributions. D1 note that us-
ing CHAMELEON's filters mimics their manual error analysis,
which includes selecting a specific set of filters and scrolling
through instance by instance to “get a feel for the error cases.”
With these cases identified, the team can either exclude them
on device or improve the model performance by considering to
treat a particular subset of the data differently. D1 also noted
that their models are purposefully tuned to be conservative,
that is, favor one outcome over another, so that failure cases
do not cause confusion for their phone users.

Interface Utility
D1 found the Aggregated Embedding the most useful and
“surprisingly fun,” and thought the Sensitivity Histogram was a
novel metric to find outliers he had not considered before. He
said these two views filtering the Feature View is helpful for
identifying instances to remove from the dataset (informing
and conducting a == Remove instances iteration). D1 also
said CHAMELEON is most useful in two scenarios: (1) general
data exploration tasks, especially when one does not define
data collection nor featurization, and (2) situations where his
team “expands our user base, where data can change quickly.”

Case Study IlI: Learning from Logs

The second project uses interaction logs from mobile phones
to decide whether to recommended particular actions to a
phone’s user. The dataset has 48,000 instances from real users,
collected over six months. Each instance has 34 features,
most of which are quantitative values that are normalized to
represent a phone user’s application behavior. The model
developer, named D2 for anonymity, is also actively working
on improving their machine learning pipeline.

Inspecting Performance Across Features

D2 started their analysis by observing the global trends of the
features in the Feature View. An immediate observation is
that a handful of the features were power-law distributed. D2

said the long tails on these features are typically interesting
and difficult instances to predict. After using the Aggregated
Embedding to filter down to these long tails, D2 said, “having
the ability to click on [a cluster] and see a subset of your
dataset across the features with their performance, that’s re-
ally awesome” (e.g., Figure 7). One of clusters identified
was determined to have predictive power in a single feature,
an insight that D2 said he did not know previously. “I want
to understand what the predictive features are, and this is a
great way to do that.” After finding some more outlier groups
that were harder to correctly predict (as seen by the diverging
histograms), D2 noted that the model on these groups was still
“somewhat of a coin flip,” and needed further analysis.

Capturing Data Processing Changes

As D2 explored older data versions, he noticed the model per-
formance started high, and over versions, slowly decreased
as more instances were included into the dataset. This
is in stark contrast to the observed behavior in the previous
case study, where D1’s data collection steadily increased the
model’s performance. D2 found one of the larger performance
drops. He then checked the date of the version and was ex-
cited to see that CHAMELEON had revealed a specific point in
time that D2’s data processing code had changed on device.
As production ML projects depend on coordination between
many different teams sourcing model inputs, knowing when
an external change could have impact on a model is important.
Thus, point events (e.g., software updates) and continuous
feature drift should be captured and handled.

Encouraging Instance-level Analysis

Using CHAMELEON, D2 describe the mindset the interface
placed him in when conducting his analysis. “I’'m drawn to
start thinking about [instance-level analysis], which I don’t
normally do. Normally, it takes a lot of work to get these visu-
alizations.” This is a important perspective shift, where a deep
understanding of ones data, as opposed to aggregate statistics,

4,000

2,000

125 []
04— -

137 | | | 1 | | 1
0 10 20 30 40 50 60 70 80 90 100 _
0.012 Filter

% .

] —_—
0 10 2‘0 3‘0 4‘0 50 60 7‘0 8‘0 90 100
Figure 7. Filtering across features helps practitioners quickly find in-
teresting data subsets to compare against the global distributions, e.g.,
this subset found using the Aggregated Embedding that performs well
(91.2% accuracy) and has feature values strictly greater than 75.

is promoted in the machine learning process. D2 also dis-
cussed that the examples along decision boundary, found from
the most sensitive instances using the Sensitivity Histogram,
need to be understood more, and suggested cleaning the data
or reconsidering how labels are applied, two possible future
data iterations (C' Modify features, C Modify labels).

Case Study Discussion

We designed and developed CHAMELEON to investigate visual
analytics tools for data iteration in production ML develop-
ment. From our case studies, we learned how our interface,
and more generally better data iteration tooling, could help
model developers attribute data changes to performance. In
particular, the model developers were enthusiastic about the
interactivity of the visualizations, such as the different filters
included that were often used during their analysis.

Improving Data Iteration Interfaces

Our developers surfaced specific features that deployed data it-
eration tooling should support, such as comparing datasets not
only over time but by other metadata, such as their originating
source. Others requested features included more options to
manipulate single features, such as displaying their true la-
bels for context, toggling y-axis normalization across train/test
splits, and computing and ranking correlations between fil-
tered feature distributions. The only confusion encountered
using the visualizations was an initial distribution encoding
interpretation mistake where D2 thought the diverging x-axis
was the label and not performance.

Informing and Prompting Future Data lterations

Lastly, it was interesting to see the model developers suggest
new data iterations based on their analysis of the visualiza-
tions. Both D1 and D2 cited targeted collection constraints
due to privacy concerns, yet they suggested other iterations (as
listed earlier) that they thought would improve model perfor-
mance. This tight loop of using interactive visualization to (1)
show data iterations, and then (2) inform future data iterations
demonstrates the power that data wields in machine learning.

OPPORTUNITIES FOR FUTURE DATA ITERATION TOOLS

Interfaces for Both Data and Model lteration

While we focused on understanding data iteration within ap-
plied machine learning, there exists great opportunity for inter-
faces that combine both model and data iteration visualizations.
In our interface, there is nothing unique about the Data Version
Timeline that could not also include model iterations as an
additional type of version. Moreover, there likely exists model
iteration specific visualizations that could be included in the
Sidebar that would display when a model iteration is selected.
As many ML projects jointly iterate and develop their data and
modeling pipeline, supporting any iteration, whether it be on
the data or model, presents a future where any ML iteration
can be tracked, visualized, and attributed to model metrics.

Data lteration Tooling to Help Experimental Handoff

In many large-scale ML projects, it is likely new people will
join (or leave) over a project’s lifespan. Since most ML
projects go through extensive iteration where experimental
records are not easily searchable nor understandable, future

work may ease experimental handoff by providing an inter-
active history of the data iterations, models, and conducted
experiments. Automatically tracking and externalizing this
metadata surrounding ML practice could help newcomers be-
come familiar with a project, since this information is typically
only known by the people conducting the work.

Data as a Shared Connection Across User Expertise

Our work reinforces that successful ML projects require a
deep inspection and exploration of the data used to create a
model. Beyond expert ML practitioners that we focus on in
this paper, there are many more people without ML expertise
who wish to apply ML in their work. Regardless of ones’
ML expertise and modeling approach, machine learning needs
data. For novices, data iteration is also the only type of ML
iteration that can be done without a significant investment to
learn sophisticated ML algorithms. Thus, this data-first view
of ML development is an important concept that helps both
novice and expert users build better models.

Visualizing Probabilistic Labels from Data Programming

As data programming, weakly-supervised probabilistic label
generation for large sets of unlabeled data [32, 33], becomes
more popular and is used as an alternative to expensive data
labeling tasks, it is important to know when and how label
updates are made given a new data labeling rule. In this case,
the data iteration is the changes of the labels for possibly many
instances at once. Attributing data labeling rules to how labels
change could help developers generate high-quality labels.

Limitations: Visualizations for Other Data Types

Our formative research and design goals apply broadly to
evolving ML datasets. Our practitioners from diverse ML
domains generally expressed a lack of support for data iter-
ation in their current tools, suggesting that practical tooling
for data iteration is an important and open area of research.
CHAMELEON focuses on iterations of tabular data; however,
ML is applied within many other domains where data takes
different forms, such as images in computer vision or text in
natural language processing. Future work should investigate
visualization designs for data iteration in these data domains.

CONCLUSION

In this paper, we explored the practice of data iteration in
production machine learning. We conducted formative re-
search through interviewing 23 applied ML developers across
13 teams at Apple. We identified a set of tasks and chal-
lenges practitioners face to tackle changing datasets. We
then designed and developed a set of interactive visualiza-
tions integrated into a prototype tool that supports these tasks.
We demonstrated the tool’s effectiveness on two case studies
where model developers applied the interface to their own
evolving datasets used in production ML projects. We hope
this work emphasizes the importance of designing data as
equally important as designing models in the ML process,
inspiring future research and tooling around evolving data.

ACKNOWLEDGMENTS
We thank Donghao Ren and our colleagues at Apple for their
time, effort, and help integrating our research with their work.

REFERENCES

(1]

(2]

3

—

(4]

(5]

[6

—_

(7]

[8

[}

[9

—

(10]

(11]

2017. Facets. Google PAIR (2017).
https://pair-code.github.io/facets/

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene
Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, and others.
2016. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint
arXiv:1603.04467 (2016).

Saleema Amershi, Andrew Begel, Christian Bird, Robert
DeLine, Harald Gall, Ece Kamar, Nachiappan
Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software engineering for machine learning: A
case study. In Proceedings of the 41st International
Conference on Software Engineering: Software
Engineering in Practice. IEEE Press, 291-300.

Saleema Amershi, Maya Cakmak, William Bradley
Knox, and Todd Kulesza. 2014. Power to the people:
The role of humans in interactive machine learning. Al
Magazine 35, 4 (2014), 105-120.

Saleema Amershi, Max Chickering, Steven M Drucker,
Bongshin Lee, Patrice Simard, and Jina Suh. 2015.
Modeltracker: Redesigning performance analysis tools
for machine learning. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 337-346.

Jean Paul Barddal, Heitor Murilo Gomes, Fabricio
Enembreck, and Bernhard Pfahringer. 2017. A survey
on feature drift adaptation: Definition, benchmark,
challenges and future directions. Journal of Systems and
Software 127 (2017), 278-294.

Aurélien Bellet, Amaury Habrard, and Marc Sebban.
2013. A survey on metric learning for feature vectors
and structured data. arXiv preprint arXiv:1306.6709

(2013).

Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying
parallel and distributed deep learning: An in-depth
concurrency analysis. ACM Computing Surveys (CSUR)
52,4 (2019), 65.

Michael Brooks, Saleema Amershi, Bongshin Lee,
Steven M Drucker, Ashish Kapoor, and Patrice Simard.
2015. Featurelnsight: Visual support for error-driven
feature ideation in text classification. In /EEE
Conference on Visual Analytics Science and Technology.
IEEE, 105-112.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen,
Matthieu Devin, Mark Mao, Andrew Senior, Paul
Tucker, Ke Yang, Quoc V Le, and others. 2012. Large
scale distributed deep networks. In Advances in Neural
Information Processing Systems. 1223-1231.

Jerry Alan Fails and Dan R Olsen Jr. 2003. Interactive
machine learning. In Proceedings of the 8th
International Conference on Intelligent User Interfaces.
ACM, 39-45.

[12]

[13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]

(21]

[22]

(23]

Matthias Feurer, Aaron Klein, Katharina Eggensperger,
Jost Springenberg, Manuel Blum, and Frank Hutter.
2015. Efficient and robust automated machine learning.
In Advances in Neural Information Processing Systems.
2962-2970.

Graham R Gibbs. 2007. Thematic coding and
categorizing. Analyzing Aualitative Data 703 (2007),
38-56.

Jeffrey Heer and Ben Shneiderman. 2012. Interactive
dynamics for visual analysis. Queue 10, 2 (2012), 30.

Fred Hohman, Minsuk Kahng, Robert Pienta, and
Duen Horng Chau. 2018. Visual analytics in deep
learning: An interrogative survey for the next frontiers.
IEEE Transactions on Visualization and Computer
Graphics (2018).

Minsuk Kahng, Pierre Y Andrews, Aditya Kalro, and
Duen Horng Polo Chau. 2018. Activis: Visual
exploration of industry-scale deep neural network
models. IEEE Transactions on Visualization and
Computer Graphics 24, 1 (2018), 88-97.

Minsuk Kahng, Dezhi Fang, and Duen Horng Polo
Chau. 2016. Visual exploration of machine learning
results using data cube analysis. In Workshop on
Human-In-the-Loop Data Analytics. ACM.

Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M
Hellerstein, and Jeffrey Heer. 2012. Profiler: Integrated
statistical analysis and visualization for data quality
assessment. In Proceedings of the International Working
Conference on Advanced Visual Interfaces. ACM,
547-554.

Ashish Kapoor, Bongshin Lee, Desney Tan, and Eric
Horvitz. 2010. Interactive optimization for steering
machine classification. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

ACM, 1343-1352.

Josua Krause, Adam Perer, and Enrico Bertini. 2014.
INFUSE: Interactive feature selection for predictive
modeling of high dimensional data. IEEE Transactions
on Visualization and Computer Graphics 20, 12 (2014),
1614-1623.

Shixia Liu, Gennady Andrienko, Yingcai Wu, Nan Cao,
Liu Jiang, Conglei Shi, Yu-Shuen Wang, and Seokhee
Hong. 2018a. Steering data quality with visual analytics:
The complexity challenge. Visual Informatics (2018).

Shixia Liu, Changjian Chen, Yafeng Lu, Fangxin
Ouyang, and Bin Wang. 2018b. An interactive method to
improve crowdsourced annotations. IEEE Transactions
on Visualization and Computer Graphics 25, 1 (2018),
235-245.

Junhua Lu, Wei Chen, Yuxin Ma, Junming Ke,
Zongzhuang Li, Fan Zhang, and Ross Maciejewski.
2017a. Recent progress and trends in predictive visual
analytics. Frontiers of Computer Science 11,2 (2017),
192-207.

https://pair-code.github.io/facets/

[24]

[25]

(26]

[27]

[28

—_—

[29]

(30]

[31

—

[32

—

[33

—_

[34

—_

(35]

Yafeng Lu, Rolando Garcia, Brett Hansen, Michael
Gleicher, and Ross Maciejewski. 2017b. The
state-of-the-art in predictive visual analytics. In
Computer Graphics Forum, Vol. 36. Wiley Online
Library, 539-562.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research 9, Nov (2008), 2579-2605.

Leland MclInnes, John Healy, and James Melville. 2018.

Umap: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint
arXiv:1802.03426 (2018).

Kayur Patel. 2010. Lowering the barrier to applying
machine learning. In Adjunct Proceedings of the 23nd
Annual ACM symposium on User Interface Software and
Technology. ACM, 355-358.

Kayur Patel, Steven M Drucker, James Fogarty, Ashish
Kapoor, and Desney S Tan. 2011. Using multiple
models to understand data. In Twenty-Second

International Joint Conference on Artificial Intelligence.

Kayur Patel, James Fogarty, James A Landay, and
Beverly Harrison. 2008. Investigating statistical machine
learning as a tool for software development. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 667-676.

Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang,
and Martin Zinkevich. 2017. Data management
challenges in production machine learning. In
Proceedings of the 2017 ACM International Conference
on Management of Data. ACM, 1723-1726.

Yao Quanming, Wang Mengshuo, Jair Escalante Hugo,
Guyon Isabelle, Hu Yi-Qi, Li Yu-Feng, Tu Wei-Wei,
Yang Qiang, and Yu Yang. 2018. Taking human out of
learning applications: A survey on automated machine
learning. arXiv preprint arXiv:1810.13306 (2018).

Alexander Ratner, Stephen H Bach, Henry Ehrenberg,

Jason Fries, Sen Wu, and Christopher Ré. 2017. Snorkel:

Rapid training data creation with weak supervision.
Proceedings of the VLDB Endowment 11, 3 (2017),
269-282.

Alexander J Ratner, Christopher M De Sa, Sen Wu,
Daniel Selsam, and Christopher Ré. 2016. Data
programming: Creating large training sets, quickly. In
Advances in Neural Information Processing Systems.
3567-3575.

Donghao Ren, Saleema Amershi, Bongshin Lee, Jina
Suh, and Jason D Williams. 2017. Squares: Supporting
interactive performance analysis for multiclass
classifiers. IEEE Transactions on Visualization and
Computer Graphics 23, 1 (2017), 61-70.

Yuji Roh, Geon Heo, and Steven Euijong Whang. 2019.
A survey on data collection for machine learning: A big
data-ai integration perspective. [EEE Transactions on
Knowledge and Data Engineering (2019).

[36]

(37]

[38

—_—

[39]

[40

—_

[41]

[42]

[43]

[44]

[45]

Dominik Sacha, Michael Sedlmair, Leishi Zhang,
John A Lee, Jaakko Peltonen, Daniel Weiskopf,
Stephen C North, and Daniel A Keim. 2017. What you
see is what you can change: Human-centered machine

learning by interactive visualization. Neurocomputing
268 (2017), 164-175.

Arvind Satyanarayan, Dominik Moritz, Kanit
Wongsuphasawat, and Jeffrey Heer. 2016. Vega-lite: A
grammar of interactive graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (2016),
341-350.

David Sculley, Gary Holt, Daniel Golovin, Eugene
Davydov, Todd Phillips, Dietmar Ebner, Vinay
Chaudhary, and Michael Young. 2014. Machine
learning: The high interest credit card of technical debt.
Google (2014).

Jinwook Seo and Ben Shneiderman. 2005. A
rank-by-feature framework for interactive exploration of
multidimensional data. Information Visualization 4, 2
(2005), 96-113.

Patrice Y Simard, Saleema Amershi, David M
Chickering, Alicia Edelman Pelton, Soroush Ghorashi,
Christopher Meek, Gonzalo Ramos, Jina Suh, Johan
Verwey, Mo Wang, and others. 2017. Machine teaching:
A new paradigm for building machine learning systems.
arXiv preprint arXiv:1707.06742 (2017).

Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen
Wong, Margaret Burnett, Thomas Dietterich, Erin
Sullivan, and Jonathan Herlocker. 2009. Interacting
meaningfully with machine learning systems: Three
experiments. International Journal of Human-Computer
Studies 67, 8 (2009), 639-662.

Charles Sutton, Timothy Hobson, James Geddes, and
Rich Caruana. 2018. Data diff: Interpretable, executable
summaries of changes in distributions for data
wrangling. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &
Data Mining. ACM, 2279-2288.

J.W. Tukey. 1977. Exploratory data analysis.
Addison-Wesley Publishing Company.
https://books.google.com/books?id=UT9dAAAAIAA]

Kanit Wongsuphasawat, Dominik Moritz, Anushka
Anand, Jock Mackinlay, Bill Howe, and Jeffrey Heer.
2015. Voyager: Exploratory analysis via faceted
browsing of visualization recommendations. /EEE
Transactions on Visualization and Computer Graphics
22,1 (2015), 649-658.

Kanit Wongsuphasawat, Zening Qu, Dominik Moritz,
Riley Chang, Felix Ouk, Anushka Anand, Jock
Mackinlay, Bill Howe, and Jeffrey Heer. 2017a. Voyager
2: Augmenting visual analysis with partial view
specifications. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.

ACM, 2648-2659.

https://books.google.com/books?id=UT9dAAAAIAAJ

[46] Kanit Wongsuphasawat, Daniel Smilkov, James Wexler, browsing. In Proceedings of the SIGCHI Conference on
Jimbo Wilson, Dandelion Mane, Doug Fritz, Dilip Human Factors in Computing Systems. ACM, 401-408.

ZKOrlls7hbn 331, Sﬁg?;ﬁda d?t;;lg%vas’r:ngsl\geflr:ll; vig:f;?lerg ’ [48] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and
: & grap P & David S Ebert. 2019. Manifold: A model-agnostic

models in tensorflow. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (2017) framework for interpretation and diagnosis of machine
1-12 ’ ’ learning Models. IEEE Transactions on Visualization

and Computer Graphics 25, 1 (2019), 364-373.
[47] Ka-Ping Yee, Kirsten Swearingen, Kevin Li, and Marti

Hearst. 2003. Faceted metadata for image search and

	Introduction
	Background & Related Work
	Evolving Machine Learning
	Visual Analytics for Machine Learning
	Visualization for Data Exploration

	Understanding Data Iteration
	Why Do Data Iteration?
	Entangled Iterations
	Common Ways Practitioners Iterate on Data
	Data Iteration Frequency
	Challenges with Data Iteration

	Visualizing Data Iteration: Motivation & Tasks
	Chameleon: Visual Analytics for Evolving Data
	Data Version Timeline: Data Iterations Over Time
	Feature View: Visualizing Evolving Distributions
	Sidebar: Visualizing Evolving Instance Predictions
	System Design and Implementation

	Cases Studies on Deployed ML Projects
	Case Study I: Sensor Prediction
	Case Study II: Learning from Logs
	Case Study Discussion

	Opportunities for future Data Iteration Tools
	Conclusion
	Acknowledgments
	References

